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Abstract
Streaming dataflow systems offer an appealing alternative to classic MySQL / memcached
web backend stacks. But websites must not go down, and current fault tolerance techniques
for dataflow systems either come with long downtimes during recovery, or fail to scale
to large deployments due to the overhead of global coordination. For example, in the
failure of a single dataflow node, existing lineage-based techniques take a long time to
recompute all lost and downstream state, while checkpointing techniques require costly
global coordination for rollback recovery.

This thesis presents a causal logging approach to fault tolerance that rolls back and
replays the execution of only the failed node, without any global coordination. The key to
knowing how to replay a valid execution while ensuring exactly-once semantics is a small,
constant-size tree clock piggybacked onto each message, incurring runtime overheads that
are low and scalable. After recovery, the state of the system is indistinguishable from one
that never failed at all.

We implement and evaluate the protocol on Noria, a streaming dataflow backend for
read-heavy web applications. Compared to Noria’s original protocol of lineage-based re-
covery, tree clock recovery time is constant in relation to state size and graph size. Ex-
perimental results show sub-second recovery times with 1.5ms runtime overheads, which
translates to a 290x improvement in recovery time.

Thesis Supervisor: Robert T. Morris
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Noria is a streaming dataflow system for read-heavy web application backends, intended
to replace the classic MySQL / memcached stack [16]. In this use case, Noria requires the
resources of many computers to support thousands of latency-sensitive end users simulta-
neously accessing hundreds of materialized views. Noria shards the backend to spread the
work across machines, a common approach to distributing load [1]. This results in dataflow
graphs that may have hundreds of nodes spread over multiple computers.

At the scale of a large website, which may necessitate hundreds or thousands of shards
to keep up with load, machine failures are inevitable. When failures happen, the backend
must be able to restore the system to a globally-consistent state, which is a state the system
could have been in had no failure happened at all. Like many other database and dataflow
systems [14, 20], Noria maintains a strict set of correctness guarantees across its multiple
machines. Noria requires materialized views to be eventually-consistent, and each node
must process updates exactly-once and in the same order they were received. Meanwhile,
the system must remain online to not disrupt users’ abilities to use the web application.

Consider the failure of a single computer in the fail-stop model of failure [23]. The
computer immediately loses the dataflow nodes on the computer, messages in transit to
and from the computer, and any materialized state in the nodes. For simplicity, assume the
failed computer has a single dataflow node, and that the node does not have any materialized
state.

Imagine we restarted the failed node on a new computer. If upstream nodes continued
as normal, downstream nodes would never receive the messages lost in the failure. We can
replay lost messages from the in-memory logs of the restarted node’s parents, but then we
would need to know exactly where to start to avoid sending duplicates or losing a message.
Even if we knew where to start, the restarted node may interleave messages from its parents
in a different order, producing an output order that is inconsistent with messages some of
its children have already seen. The non-determinism in execution order after failure is a
well-established problem in similar approaches [13, 4, 28].

To avoid the complexity of tracking where and what order messages were sent, No-
ria currently purges the node’s entire downstream graph and recomputes the state from
scratch. Some nodes may have been on surviving computers, but Noria redundantly purges
and recomputes their states as well. Like in other coarse-grained lineage recovery solu-
tions [30, 28], recovery time with this protocol is proportional to the size of state in the
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graph. Rebuilding the state can take days or even weeks with large amounts of historic
data. This is a problem for long-running web applications with many clients, where mas-
sive amounts of data accumulate over time and high availability is mission-critical [15, 17].

An alternative is to restore the graph from a previously-consistent checkpoint without
having to rebuild the state from scratch. Global checkpointing solutions incur high runtime
overheads due to the need for global coordination in the normal case [22, 21]. Distributed
checkpointing eliminates overheads in the normal case [6, 8], but still requires costly global
coordination to roll back the entire graph in the event of the failure. In this case, the
recovery time is proportional to the number of dataflow nodes in the graph. As a result,
checkpointing also does not scale to the large, complex graphs we expect from Noria.

Causal logging is a class of fault tolerance techniques that rolls back only the failed
node to return the system to a globally-consistent state [4, 13]. The main idea behind
causal logging is that a valid execution only needs to observe the causal effects of previ-
ous messages, not to be exactly the same. Some causal information, or data lineage, is
piggybacked onto each existing message and tracked in each node. During recovery of a
failed node, the remaining nodes piece together their causal information to produce a valid
execution. In particular, they use the lineage to determine which messages to replay and
what order to process them in to reflect a valid interleaving of messages.

The naive approach to causal logging incurs large runtime overheads. Since the lin-
eage information is passed through the data plane, every additional message compounds
the overhead of piggybacked lineage information [4]. While batch processing systems
limit the frequency of messages [18, 12, 31, 7], continuous stream processing systems may
send millions of messages per second at milliseconds latency [22, 19, 3]. The lineage in-
formation itself can also be large and proportional to the size of the graph. As a result,
causal logging techniques traditionally trade-off the accuracy of lineage for lower runtime
overheads [4].

This thesis presents a new causal-logging approach to fault tolerance for Noria. This so-
lution incurs low runtime overheads while guaranteeing exactly-once semantics, against the
assumption that consistency with causal logging requires a heavy runtime cost. The key to
achieving low runtime overheads in Noria is a small, constant-size tree clock that includes
only the changed lineage information, and whose size is independent of the structure of the
graph. By piggybacking the constant-size tree clock onto each message, we encapsulate
enough information to restore the system to a globally-consistent state, without any global
coordination. Our current implementation does not explicitly support concurrent failures
of multiple nodes or failures of stateful nodes, but we believe that our model can easily be
generalized to these use cases in future work.

In exchange for forwarding only small amounts of lineage information, our solution
requires a more complex recovery protocol. A controller officiates the recovery protocol
in the coordination plane, as opposed to the data plane, and invokes a series of message
exchanges between the controller, the restarted node, and the immediate neighbors of the
restarted node. If the node’s execution is necessarily deterministic, the controller only needs
to determine where each node should resume sending messages from its log. Otherwise, the
controller invokes an execution replay algorithm to determine the interleaving of messages
received by the restarted node.
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1.1 Summary
In summary, this thesis presents a scalable approach to fault tolerance using a low-overhead
causal logging technique called tree clocks, combined with a recovery protocol for deter-
ministic failures and an execution replay algorithm for non-deterministic ones. The ap-
proach is scalable because we can add more machines to the system without impacting
recovery time or runtime overhead. We implement the approach on Noria with the follow-
ing correctness and performance goals:

• Correctness: Updates are reflected in the outputs exactly-once and are processed
by nodes in the order they are sent. If no new updates are made, materialized views
eventually reflect all updates up to the last updated value i.e. eventual consistency.

• Performance: Recovery time and runtime overhead are constant in relation to the
amount of state and the number of nodes in the dataflow graph. Both are reasonably
low.

Currently, the scope of our model only includes computer failures that affect a single
dataflow node, which must be stateless. The model also does not currently support partially-
stateful and dynamic dataflow graphs. However, we believe the recovery protocol is general
enough to integrate these properties, which we address in Future Work (x7).

1.2 Contributions
The contributions of this thesis are:

• Tree clocks: an abstraction for tracking data lineage, which is where and in what
order messages are sent, with low-overhead local coordination.

• Recovery protocol: a scalable fault tolerance protocol that uses the causal logging
information in tree clocks to recover from deterministic single-node failures.

• Execution replay: an algorithm that combines with the recovery protocol to resolve
non-determinism in failures and produce a globally-consistent state.

• Implementation: a prototype in Noria with an evaluation of runtime overheads in
the normal case and recovery time after failure.
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Chapter 2

Background and Related Work

2.1 Noria: the dataflow model

Noria is a streaming dataflow system intended to replace the classic MySQL / memcached
stack. The core component of the system is a high-performance dataflow graph layered
over a traditional database. The client first specifies a commonly-used SQL query, like
one that is called when loading a website frontend. Noria translates the SQL query into
a dataflow graph of nodes, or relational operators, where nodes are sometimes shared by
multiple queries to reuse state. The output nodes of the graph represent materialized views,
and they cache pre-computed values that make reads to the query blazingly fast.

Once the graph has been initialized, clients interact with Noria by sending requests to
the inputs or outputs of the dataflow graph (Fig. 2-1). Writes to Noria are first persisted
to a base table, then injected into an input node of the graph. The input node then for-
wards the write message to downstream operators along graph edges until the message is
materialized in an output node. While the write is still flowing through the graph, reads
to the materialized view return a cached, potentially stale, value. Once the write has fully
propagated through the graph, the reads will return an updated value.

When a node receives a message, it produces an output message as a deterministic
function of the input message and any state in the node. The function also determines which
children, if any, the node sends the output message to. Output messages are necessarily the
result of an input message. Writes to Noria are batched, meaning a single message could
potentially reflect many writes to a base table.

The sharder node is a particularly interesting case of a stateless node. In general, Noria
shards a graph by replicating the graph by the system’s sharding factor. If portions of the
graph are sharded by different keys, which is often the case in more complex queries, Noria
uses a sharder node to re-route the graph. The inputs to the sharder node are replicas of the
upstream graph sharded by one key, while the outputs of the sharder node are replicas of
the downstream graph sharded by another key. There are no inherent constraints on which
nodes, if any, the resulting output of a sharder node can go to. In presenting the general case
of the algorithm when losing a stateless node with multiple parents and multiple children,
we have the sharder node in mind.
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Figure 2-1: A generic dataflow graph in Noria without sharding, where A, B, and H have
materialized state. A user injects a write to B, who forwards the message just to C. C
forwards the message to both F and H . While F filters the message and doesn’t send it to
H , H materializes the message from C. Another user reads the materialized view in the
output node H aand observes the propagated write.

2.2 Lineage-based recovery

Lineage-based recovery is a common fault tolerance technique for bulk-synchronous par-
allel (BSP) systems [31, 7]. When the lineage of a message is known before processing,
these systems can rebuild lost state from partial results [31, 12, 7]. But while BSP sys-
tems have natural barriers for resuming computation due to their synchronous model of
execution [27, 12, 18], it is unclear where continuous stream processing systems like Noria
can rebuild their state except from scratch [16]. Recomputing state can take a long time,
causing harmfully long downtimes for Noria’s latency-sensitive users.

2.3 Checkpointing

Checkpointing rolls back the system to a globally-consistent state after failure. Global
checkpointing is intuitively correct, but adds high runtime overheads due to the global
coordination required for each checkpoint [22, 21]. Distributed and asynchronous check-
pointing eliminate the need for coordination in the normal case [5, 9], but do not necessarily
guarantee exactly-once since the execution order between the time of failure and the time
of the rollback may be different. To provide stronger consistency guarantees like exactly-
once, the system must roll back its entire graph [5, 8], which has been shown to be slow at
scale [27]. Our fault tolerance solution draws from the distributed progress-tracking ideas
of distributed checkpointing, while avoiding global coordination during recovery.
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2.4 Causal Logging
Causal logging protocols send lineage information with each message in the data plane [4,
13]. On failure, the information on surviving nodes can be used to restore the system to
a globally-consistent state. Depending on the size of lineage information, causal logging
may incur high runtime overheads. Lineage Stash removes the overhead from the data path
by asynchronously logging lineage information to a decentralized store [28]. We present
a different approach to causal logging, decreasing the size of the lineage required so that
even synchronous processing of lineage incurs little runtime overhead. Also unlike Lineage
Stash, our solution guarantees sequential consistency, i.e. messages from the same node are
processed in the same order by its children, an important property for avoiding subtle bugs
with non-determinism.

There has been much work in improving the representation of lineage to be memory-
efficient. Vector clocks, whose sizes are proportional to the number of processes in the
naive approach, have been made more efficient by only forwarding the part of the clock
that has changed [25, 10]. Lineage Stash forwards only the most recent part of the lineage
that has not been durably stored [28]. Noria potentially faces a similar memory blowup
problem with tree clocks. We solve this problem by constraining the size of tree clocks
based on which nodes in the graph are allowed to communicate with each other and the
paths the messages are allowed to take.
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Chapter 3

Design

We approach the problem of knowing where and in what order to resend messages by
looking at the failure of a computer with a single stateless node (Fig. 3-6). Throughout
this section, we call this failed node B, where B has multiple parents fAi; i 2 [1;m]g and
multiple children fCi; i 2 [1; n]g.

We motivate this design by the desire to not redundantly purge and rebuild the state in
nodes on surviving machines. Consider what would happen in Fig. 3-6 if we used Noria’s
naive approach to fault tolerance. In this approach, Noria would purge all the state in B’s
children, incurring long recovery times if the nodes had to recompute a lot of state. If each
of B’s children had descendants of their own, we would have to purge their state as well.

Instead, our fault tolerance solution proposes we restart the failed node on a new ma-
chine and leave the surrounding nodes intact. Call this restarted node B0. B0 does not
initially have any state of its own, but our solution reconstructs any relevant information
in the node by using the state on surviving machines. Though we present the solution in
the context of a single stateless node, we believe this approach is important for leading us
towards a complete fault tolerance solution including stateful operators.

First, we present a data structure called tree clocks for tracking lineage, and describe
and how it is used in normal operation (x3.1.1). Next, we introduce a general recovery
protocol that uses tree clocks to calculate where (x3.2) and in what order (x3.3) to resume
sending messages. Throughout the description of the recovery protocol, we supplement
the text with an example execution. Finally, we discuss optimizations that reduce the space
overhead of tree clocks and logs for practical use (x3.4).

3.1 Normal operation

In this section, we discuss what information a node needs to track to be able to recover
the system to a globally-consistent state after failure. This recovery-related bookkeeping
involves three main components: a tree clock for accumulating the lineage of all received
messages, a diff log for storing changes in lineage, and a payload log for storing the history
of data in each outgoing message (Fig. 3-1).
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Field Description
Tree Clock Accumulate the lineage of all received messages to remember the

last time the node heard from each upstream node.
Payload log Store the data in each outgoing message to be able to replay mes-

sages to downstream nodes from a previous point in time.
Diff log Store changes in lineage to capture the non-determinism in the order

that upstream nodes received messages.

Figure 3-1: Bookkeeping state in a node for recovery.

Figure 3-2: H’s tree clock based on the dataflow graph in Fig. 2-1, with root H and time
tH . Note that C appears in H’s tree clock twice because there are two paths a message can
take to reach H from C. The times associated with each C are different, due to either the
non-determinism with which messages arrive or due to which childrenC sent each message
to.

3.1.1 Tree clocks

A tree clock is an inverted tree of node IDs. The structure of the tree clock depends on the
root of the tree clock and the structure of the corresponding dataflow graph. Each node H
in the dataflow graph keeps a tree clock with root H and every possible path to H (Fig. 3-
2). A path in the tree clock depicts a path a message could have taken through the dataflow
graph to reach H . If there are multiple paths a message can take from a certain node, the
node appears in the tree clock multiple times.

Each node in the tree clock is associated with an integer time. This time represents a
counter of outgoing messages sent by that node. However, because a node may not send all
its messages to all its children, the counter does not necessarily determine the number of
messages received from a node. Also, because we increment the counter for each outgoing
message, we can associate each message with a unique node ID and time.

Diffs are a subset of tree clocks that represent the lineage of messages through the
dataflow graph. Sometimes referred to as provenance [11], lineage tells us the history

20



Figure 3-3: The payload log of node H , which contains all of H’s outgoing messages.
Each message has a diff with root H , where tH increases sequentially across the log. Each
message also has a data payload.

of nodes a message passes through to get to where it is. In stateless nodes, where the
outputs of messages do not depend on the results of previous messages, diffs are necessarily
linear. Since messages are processed exactly-once, the diff associated with a message is
necessarily unique.

We use the following notation to discuss tree clocks in textual form. Capital letters in-
dicate nodes in a dataflow graph, except the letter T , which indicates a tree clock. Let T be
the tree clock in Fig. 3-2. In T , H:8 refers to node H associated with time 8. Square brack-
ets indicate an unordered layer of nodes in the tree clock. The complete textual notation
for T is:

H:8 [C:7 [A:5 B:6] F :8 [C:8 D:1]]:

Additionally, denote t[H;F;D] to be the time associated with D in the tree clock by taking
the path through H and F . When the path to D is unambiguous, we can abbreviate the
notation to tD. In this case, t[H;F;D] = tD = 1.

3.1.2 Payload log
The payload log is a log of all messages a node has sent. Each message contains two
parts: the diff and the payload. Consider node H’s payload log (Fig. 3-3). The diff in
each message tells receiving nodes that H sent the message and at which time. Since H
assigns times sequentially as it produces outgoing messages, the root times of the messages
also increase sequentially across the log. The payload is the actual message data that is
processed and transformed in each node. In general, the payload log is necessary to be able
to replay messages to downstream nodes from a previous point in time.

3.1.3 Diff log
The diff log is a log of the changes in lineage for each message the node has sent. The
node constructs a diff from an input message, then sends the diff with an output message.
Consider node H’s diff log (Fig. 3-4). Each diff has root H , and the root times increase
sequentially across the log in the order they were assigned. The parent node in each diff
corresponds to a parent of H in the dataflow graph.
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Figure 3-4: The diff log of node H , which contains all diffs that H has produced. Each
diff has root H , and tH increases sequentially across the log. Light blue represents the
lineage that came from a parent, while dark blue indicates the lineage that came from H .
The parent nodes in the diffs, F and C, are parents of H in the dataflow graph.

Figure 3-5: H receives a message from C with time tC = 9. H adds a child node with
time tH + 1 = 9 to the message diff, then applies the new diff to its own tree clock. H then
sends a message with the transformed payload, including the last diff in the diff log.

3.1.4 Message processing algorithm
We now present the algorithm for how a node processes an input to produce an output,
using the fields in Fig. 3-1. Initially, all times in the tree clock are 0 and all logs are empty.
When H receives a message:

1. Copy the diff in the message, whose root is a parent node, and add H to the bottom
of the diff with time tH + 1, where tH is from H’s own tree clock. Store the new diff
in the diff log.

2. Apply the diff to H’s tree clock, which is an operation that takes the greater value in
corresponding entries (Fig. 3-5).

3. Process the message payload, and include a copy of the diff in the output.
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Figure 3-6: A failed node B with multiple parents and multiple children. B has m = 3
parents A1, A2, A3 and n = 3 children C1, C2, C3. Even if B is a stateless node, we may
lose messages that were in transit to and from the node, creating non-determinism when
replaying messages on recovery. B’s children all have materialized state that would need
to be purged if using Noria’s original recovery protocol.

4. Send the output message and store the message in the payload log.

With this algorithm, if H fails, the surviving nodes have tracked enough information to be
able to restore the system to a globally-consistent state. In particular, H’s children know
which messages they received from H , where the messages came from, and in what order.
H’s parents have the payloads to replay messages right where H left off. Now all that is
required is a recovery protocol to put this information together.

3.2 Failure
In this section, we describe how the system utilizes the state on surviving nodes to restore
the failed node to a globally-consistent state. A system-wide controller is responsible for
officiating the entire recovery process. (x3.2.1). After detecting the failure, the controller
aggregates the recovery-related metadata from surviving nodes to determine where each
node should resume sending messages (x3.2.2). Finally, the restarted node must ensure its
children receive each message exactly-once (x3.2.3).

3.2.1 Controller
The controller is responsible for detecting failures and officiating the recovery protocol.
The controller detects the failure after a heartbeat timeout with a machine (Fig. 3-6). The
controller determines which node was on the failed machine and restarts it on a working
machine.
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At this point, the controller needs to reform the network connections to and from the
restarted node B0 to integrate it back into the dataflow graph. Before it does, the controller
tells the node’s parents Ai not to send messages to B0 until recovery is finished. This pre-
vents B0 from processing messages before its state has been initialized. Once the network
connections are reformed, the controller begins the recovery protocol to determine where
each node should resume sending messages.

It is important to distinguish the use of a system-wide controller, which is only invoked
during failure, from global coordination in the normal case. Even during failure, the inter-
actions between the controller and the dataflow graph are localized to a region including
the failed node and its immediate neighbors, the neighborhood. We discuss neighborhoods
more in x3.4.1. In addition, it is easier to reason about a complex recovery protocol that is
officiated by a controller, as opposed to completely decentralized.

3.2.2 Recovery protocol
Once the controller has restarted the failed node on an existing machine and prepared the
node’s immediate neighbors to begin recovery, it begins the recovery protocol. The recov-
ery protocol involves a series of message exchanges between the controller, the restarted
node, and its immediate neighbors (Fig. 3-7):

1. Ask all Ci for their diff logs and tree clocks rooted at B (Fig. 3-7b). Let tB;min be
the minimum tB in the tree clocks. Calculate T �, a tree clock with root time tB;min,
by applying all diffs up to and including tB;min to a tree clock rooted at B0 initialized
with all zeros.

2. Tell B0 to resume sending messages to each Ci at 1 +B’s time in the clock from Ci,
respectively (Fig. 3-7c). Include T � for B0 to initialize its tree clock. Wait for an ack.

3. Tell each Ai to resume sending messages to B0 at 1 + Ai‘s time in T � (Fig. 3-7c).

During the recovery protocol, the controller rolls back the recovery-related state inB0 to
a previously-consistent state of B without having to rollback downstream nodes. Note that
T � is not necessarily a state that B’s tree clock was actually in, since we only require B0’s
recovered state to encapsulate the causal effects of the messages received by its children.
The time tB;min represents the latest time that Ci is guaranteed to have received a message
from B0, if it should have received the message already. Also, the ack in step 2 is necessary
to ensure that B0 has already initialized its state with T � before it receives any messages
from A.

The controller might ask B0 to resume sending messages that it had already sent before
failure. However, B0 just started up and has an empty payload log. As a result, it is unable
to immediately resume sending messages to its children until it receives messages from
its parents. If B0 only has one parent, the order it receives messages is deterministic, and
its computation is also deterministic. Analogously, if B0 only has one child, the order it
processes messages in does not matter since its child has not observed an ordering yet.
However, if B0 has multiple parents and multiple children, its children are able to observe
a different interleaving of messages processed from the node’s parents. Thus we require an
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(a) B’s diff log from before the failure. Some of these messages are still in transit when the failure
occurs (Fig. 3-6). The nodes underneath each diff indicate which children the message with that diff
was sent to.

(b) In Step 1, each Ci sends its diffs and tree clock with root B to the controller. tB;min = 1 is the
minimum tB across all clocks. T � is the result of applying diffs where tB � tB;min to a tree clock
with all zeros. The only such tB is 1, so T � = B:1 [A1:1 A2:0 A3:0].

(c) In Step 2, B0 resumes sending to C1 at 2, C2 at 2, and C3 at 7. B0 sets its tree clock to T �. In
Step 3, A1 uses T � to resume sending to B0 at 2. A2 at 1. A3 at 1.

Figure 3-7: The recovery protocol officiated by the controller once it has restarted the failed
node, B, on an existing machine as B0. A and C remain intact after the failure, including
the materialized state in C. The diagram continues from the failure in Fig. 3-6.
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Invalid Execution from Processing Messages in the Received Order

Input Output Children Valid?
A3:1 B0:2 C1 Yes.
A1:2 B0:3 C2 Yes.
A2:1 B0:4 C1 Yes.
A1:3 B0:5 C3 Yes, not sent to C3 based on deduplication mechanism.
A3:2 B0:6 C2 No, inconsistent withB:6 [A2:2] already received by its

sibling C3.
A2:2 B0:7 C1; C3 No, C3 already received the same message with a dif-

ferent diff B:6 [A2:2].

Figure 3-8: An invalid execution as the result of processing messages in the order they were
received. The input column in the table reflects the order. The diagram continues from the
failure in Fig. 3-6 and the recovery state machine in Fig. 3-7.

additional algorithm to ensure that the messages B0 sends are consistent with those already
received by its children (x3.3).

3.2.3 Deduplication

The restarted node needs to ensure that it does not send a message to a child that already
received the message before the failure. To deduplicate messages, B0 keeps a map from
each child node ID to the minimum time it is okay to send to that child. By default, the
minimum time is 0, but on recovery and until the next failure, B0 sets the minimum time
for each node to where it was told to resume sending messages to that node. Once B0 has
generated a message with a certain time, it checks for duplicates based on this map. Thus
each Ci receives messages from the new B0 right where the old B left off.

Alternatively, the receiving node Ci can deduplicate messages by discarding a message
from B if tB is not strictly greater than the root time of the previous message from B. This
is more similar to the deduplication mechanism of other dataflow systems [2, 29]. However,
we chose to deduplicate on the sending side because it requires one more read per message
sent, rather than one more write per message received.

3.3 Ensuring a valid execution order
In addition to deciding where to resume sending messages, the system also needs to decide
what order to process messages in to ensure the same interleaving of received messages as
before the failure (Fig. 3-8). The order is important to ensure that downstream nodes, who
may have states that depend on the input order, are consistent with each other. In this case,
the restarted node rather than the controller decides the order based on an execution replay
(ER) algorithm, since the processing order depends on the which messages were actually
received. As discussed in x3.2.2, this section only applies to nodes with multiple parents
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Figure 3-9: Partially completed table used to determine a valid execution replay. The first
message that B0 sends is B0:(tmin + 1) [A1:tA1 ], followed by B0:(tmin + 2) [A2:tA2 ]. The
Ci markers at the bottom of the table indicate that all messages left of that marker should
have already been received by Ci or will never be sent to the node at all.

and multiple children.
The high-level goal of the execution replay is to resend all messages between tB;min and

tB;max, since these messages have already been observed by some ofB0’s children, but have
yet to reach some of its other children. In order to resend these messages, the execution
replay algorithm needs to figure out which upstream Ai each message came from, and how
to send messages where this information is undetermined.

The post-recovery execution must reflect the ordering of diffs encapsulated in the diff
logs of the restarted node’s children. Each diff log describes a subset of messages that came
from the failed node. The controller collects this information from each child and sends
part of it to the restarted node. Let tB;max be the maximum tB in the tree clocks received
from Ci in Step 1 of the recovery protocol (x3.2.2). The controller sends the diffs with root
B where tB;min < tB � tB;max. It is up to B0 to determine what order to send them in
once it has received the diffs. We call these target diffs because the restarted node must
try to replay these exact diffs on recovery, while potentially sending different messages in
between.

3.3.1 Execution replay table
We aid the process of determining an order to process received messages with the execution
replay table (Fig. 3-9). A completed table defines what order B0 should process messages
in until it can return to normal operation.

We describe each aspect of the ER table and what it means in the context of replaying
messages in order. The ER table belongs to the restarted nodeB0. Each column corresponds
to a message with time tB0 thatB0 must replay, while each row corresponds to a parent node
that B0 might have received a message from. The integer entry in each column combined
with the parent for that row correspond to the input message used to produce the output
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Figure 3-10: Empty ER table for the restarted node in Fig. 3-6. There is a column for each
undetermined output message from tmin + 1 = 2 to tmax = 6. There is a row for each
parent A1, A2, and A3. There is a marker for each child C1, C2, and C3 on where B0 was
told to resume sending messages in Fig. 3-7c.

message with time tB0 . Together, an entry tA in row A column tB means that B will send a
message with diff B:tB [A:tA]. In addition, the markers at the bottom of the table indicate
where B was told to resume sending messages to each child. The child Ci will only receive
messages replayed after the time of the marker. To represent a valid execution, the solved
ER table must fulfill several constraints:

• Monotonicity constraint: The entries in each row are in strictly increasing order.

• Regularity constraint: Each column has at most one entry, and columns that corre-
spond to a target must have the matching entry.

• Eventuality constraint: If a message would be sent to Ci, the entry goes after the
marker for Ci. If an entry is filtered, it may be discarded.

These constraints correspond to our correctness goals in x1.1. The Monotonicity and Reg-
ularity constraints ensure that updates are processed exactly-once and in the order they
are sent by each parent. The Eventuality constraint ensures that each update is eventually
processed, and thus the views are eventually-consistent.

The restarted node uses the diffs received from the controller to initialize the ER table
(Fig. 3-10). ForB0 each row is one of its parentsA1,A2, andA3. Each column is a message
that B needs to send from starting from tB;min + 1, one more than the root time of its tree
clock, to tB;max, the root time of the last target diff. Finally, B0 uses the information from
where it was told to resume sending messages to each child to create the markers at the
bottom of the table.

3.3.2 Solving the ER table
We must first collect the set of messages we can use to solve the ER table. Since the
ultimate goal is to replay the target diffs, B0 collects incoming messages in a buffer until it
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Algebraic Approach to Solving the ER Table

Input Children Monotonicity Regularity Eventuality Result
A3:1 C1 t � 2 t 6= 5; 6 t � 2 No upper bound.
A1:2 C2 2 � t � 5 t 6= 5; 6 t � 2 t 2 f2; 3; 4g
A2:1 C1 2 � t � 6 t 6= 5; 6 t � 2 t 2 f2; 3; 4g
A1:3 C3 t = 5 t = 5
A3:2 C2 t > tA3:1 t 6= 5; 6 t � 2 No upper bound.
A2:2 C1; C3 t = 6 t = 6

(a) Algebraic inequalities based on the Eventuality, Monotonicity, and Regularity constraints.

(b) Complete ER table.

Figure 3-11: Algebraic constraints on where each message can go in the table based on
the received messages in Fig. 3-8 (Fig. 3-11). This diagram continues from the failure in
Fig. 3-6. One valid solution to the table is to send B0:2 [A2:1] then B0:3 [A1:2] (Fig. 3-11b).
However, any of the six solutions where A2:1 and A1:2 are placed in two different columns
of B0:2, B0:3, and B0:4 are valid. The targets are the diffs where tB;min < tB � tB;max,
in this case the diffs for B:5 and B:6, which were observed by C3 but not its siblings.
Messages that correspond to a target can only be placed in one position in the table.
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has a message that corresponds to each target. A message corresponds to a target if its diff
is the same as the target. B0 then uses the buffered messages to fill out the ER table.

Any solution that satisfies the three constraints is sufficient, and there may be multiple
possible solutions. There are also many different ways to find a solution to the constraint
problem. At a high level, our method involves bounding the set of possible columns for
each message based on the constraints, then narrowing down the space of solutions with a
set of heuristics:

1. Place each message that corresponds to a target in the table.

2. Algebraically constrain where each message can go in the table based on the three
table constraints (Fig. 3-11a). If there is no maximum bound, hold the message for
later.

3. Place the remaining constrained messages in the table by brute-forcing every solution
that satisfies the constraints (Fig. 3-11b).

In practice, we hope for the space of possible solutions to be relatively large, and for
at least one solution to be easy to find. There must be at least one possible solution to the
table, which is the execution of messages from before the failure. We can also optimize
the brute-force checker using heuristics. For example, we can place messages with fewer
possible solutions before placing others, or place messages in the order they were received
as far left as possible. In a sense, solving the ER table is like a constrained topological sort.

3.3.3 Using the ER table to replay messages

The restarted node processes the messages in order from left to right in the completed ER
table. Note that currently,B0’s tree clock is equal to T �, which has root time tB;min (x3.2.2).
Thus based on the message processing algorithm in x3.1.4, the next message that B0 sends
will have time tB0 = tB;min + 1. This is also the first entry in the execution replay table.

If the column has an entry, sending the message is straightforward. Let tAi
be the entry

in row Ai column B0:tB0 . Then B0 removes the input Ai:tAi
from its buffered messages,

processes it, and sends the output with diff B0:tB0 [Ai:tAi
].

If the column is empty however, either there is a message we have no information
about, or the message does not have an upper bound in the table. Regardless, B0 pretends
this space corresponds to a filtered message, generates a dummy message with that time to
place in the payload log, and does not forward the message to anyone.

Once B0 has reached tB;max, the last message that a child had seen before the failure,
recovery is complete and B0 can send the remainder of its buffered messages as if they had
just arrived. Note that the order that B0 replays messages can easily be different B’s orig-
inal order (Fig. 3-12). However, the new order encapsulates the causal effects of previous
messages that surviving nodes have observed.

30




