Verifying a high-performance
crash-safe file system using a
tree specification

Haogang Chen, Tej Chajed, Stephanie Wang, Alex Konradi, Atalay
lleri, Adam Chlipala, M. Frans Kaashoek, Nickolai Zeldovich

Uty Agih

CSAIL

File systems are difficult to make correct

« Complicated implementations
e on-disk layout

* iIn-memory data structures

« Computer can crash at any time

Despite much effort, file systems have bugs

e File systems still have subtle bugs
 Well documented [Lu, TOS '14] [Min, SOSP '15]

« Example from ext4:
combination of two optimizations allows data to
leak from one file to another on crash

e Discovered after 6 years [Kara 2014]

Approach: formal verification

 Write a specification

* Prove implementation meets the specification

 Ensures implementation handles all corner cases

* Proof assistant (Coq) ensures proof is correct

e Avoid large class of bugs

Existing verified file systems

correctness

FSCQ [SOSP '15]
BilbyFS [ASPLOS '16]
Yegdrasil [OSDI '16]

verified file systems
ext4
btrfs
ZFS

performance

Goal: verified high-performance file system

correctness

FSCQ [SOSP '15] ?
BilbyFS [ASPLOS '16]
Yggdrasil [OSDI '16]

verified file systems
ext4
btrfs
ZFS

performance

Strawman: optimize FSCQ

correctness

FSCQ code

performance

Strawman: optimize FSCQ

spec
proof

FSCQ code

correctness

performance

Strawman: optimize FSCQ

specC
proof?
proof
correctness

FSCQ code —» fast FSCQ

performance

Problem: specification incompatible with high
performance

e Achieving high performance requires optimizations
« Some optimizations change file-system behavior

e Requires changes to specification

Example optimization: deferred commit

e Deferred commit: buffer system calls until fsync

e FSCQ’s specification: “if create(f) has returned
and computer crashes, f exists”

e Deferred commit requires a new specification

Optimizations that change crash behavior

e Deferred commit: buffer system calls until fsync

e Log-bypass writes: skip log for data writes

e Buffer cache: cache data until fdatasync

e Existing specifications do not support these
optimizations

10

Contribution: DFSCQ file system

e Precise specification for a subset of POSIX

e supports deferred commit and log-bypass writes

e Verified, crash-safe file system

e Traditional journalling file-system design

e Implements most of ext4’s optimizations
 Machine-checked proof that implementation meets specification

e Performance on par with ext4 (but DFSCQ has fewer features)

11

Specifying a file system

e Design abstract state

12

Specifying a file system

e Design abstract state

e Describe how system calls execute

12

Specifying a file system

e Design abstract state
e Describe how system calls execute

e Describe effect of crashes

12

Starting point: tree as abstract state

Trees are a simplified abstraction of a file system

13

Specification abstracts implementation details

abstract state

implementation’s
state

14

Specify how system calls affect abstract state

specification describes transition

4 | A
E un11nk(g)>
f f

unlink(g)
>

15

Challenges in specifying crash behavior

e Optimizations mean crashes can be complex
e Problem 1: deferred commit
* Problem 2: log-bypass writes

 Problem 3: caching

16

Problem 1: deferred commit leads to many
crash states

e unlink(g)>
f f

A A

17

Problem 1: deferred commit leads to many
crash states

/

>

crash: reset memory

17

Problem 1: deferred commit leads to many

crash states

J

>

crash: reset memory

17

f
| f

How do we specify crash outcomes with
deferred commit?

18

How do we specify crash outcomes with
deferred commit?

crash g
f f

18

Specify deferred commit using tree sequences

tree sequence

_ J

19

Specify deferred commit using tree sequences

o Abstract state is a sequence of trees

-)

tree sequence

_ J

19

Specify deferred commit using tree sequences

o Abstract state is a sequence of trees

e Always read from the latest tree

-)

3

tree sequence

_ J

19

Specify deferred commit using tree sequences

 Metadata updates add new trees in the specification

e Always read from the latest tree

s B
3
f
_ W,
~
3

\
/E E unlink(g)
f f
J

20

-

Specify deferred commit using tree sequences

 Metadata updates add new trees in the specification

e Always read from the latest tree

4)
| /E E
f f

_ J

21

Specify deferred commit using tree sequences

 Metadata updates add new trees in the specification

e Always read from the latest tree

~

3

-

~

J

o)

»
»

\O\

f

J

22

truncate(f,2)

Specify deferred commit using tree sequences

 Metadata updates add new trees in the specification

e Always read from the latest tree

SRR

23

Specify deferred commit using tree sequences

 Metadata updates add new trees in the specification

e Always read from the latest tree

~

3

-

3

o)

)

AL

rename(f,/)

24

Behavior of tree sequences on crash

e What about crash behavior?
4)
g /X X \O f /\@

N | | y

tree sequence

25

Behavior of tree sequences on crash

e What about crash behavior?

8 B
g \o &@
. fD fﬂ f
lcrash
a B
g

25

tree sequence

post-crash
tree sequence

Crash specification allows background

commits

post-crash states:

-

3

_

~
/E
b

~

_

)

~

J

tree sequence

crash

Specification for fsync

1)

/\?

)

\

J

27

fsync("/")

Problem 2: log-bypass writes may reorder
updates

 Log-bypass writes: update file data blocks in place, skipping log

\ rename write
> f > f

28

Problem 2: log-bypass writes may reorder
updates

 Log-bypass writes: update file data blocks in place, skipping log

o Effect: data writes and metadata updates can be reordered on crash

\ rename write crash D\O
> f /\@ > f >
f‘

28

Log-bypass writes

Cﬁ N

At minimum, writes to latest tree

29

write(f,l)

Log-bypass writes

Affects the same file in earlier trees

30

write(f,l)

Specify that other files are unaffected

a)

g /E x f /D\@
fD f f

a)

b21?

g /E E H fﬂ& write(f,[])

b21 b21

f f f

_ J

Puts an obligation on the implementation to avoid block re-use
within a tree sequence

31

Specify that other files are unaffected

8)
b21
g fﬂ& wr‘ite(f,l)
b21 b21
f f f
_ J

Puts an obligation on the implementation to avoid block re-use
within a tree sequence

32

Specify that other files are unaffected

A

J

8)
b21
g f wr‘ite(f,l)
b 1
f f fl Bb51 b
_ J

Puts an obligation on the implementation to avoid block re-use
within a tree sequence

32

Problem 3: data writes are cached

 Write-back buffer cache

write crash f\
f f\@ T o

33

Problem 3: data writes are cached

 Write-back buffer cache

e Data can be persisted in any order

write crash f\
f f\@ T o
.
o
"

33

Specifying data caching: block sets

RS

uncached

two possible values: old (7) and new (W)

34

Behavior of block sets on crash

RIS

N o Y () (0)

A% ®\% E f[ﬁ crash
f f f
o) L)

Behavior of block sets on crash

R

two degrees of non-determinism in crash states:

~ N oY) () [R
g /\% ®\% Q\j f /\@ crash
f f f
. -) _ J
s s

_ . —/
>i
_ SN J

Behavior of block sets on crash

R

two degrees of non-determinism in crash states:

s N (0) f\ﬂ a /\3
3 il crash

f f f
_ /2 L R NG —
(o)

ﬁ
specification allows f

metadata and data updates
to be reordered > f

Specification for fdatasync

IRES

fdatasync(f)

Specification for fdatasync

_

IRES
RS

fdatasync(f)

fdatasync specification says block sets collapse in every tree

38

Summary: DFSCQ’s tree-based specification

e metadata operations add a new tree

 fsync collapses to latest tree

e writes update blocksets in every tree

 fdatasync collapses blocksets in every tree

39

Prove implementation meets specification

length: 2
type: file
a) - ’3 ()
g stat(g) g
f f
_ _J _ _J
A A
length: 2
type: file

| S |

stat(g)

>

40

Prove implementation meets specification

length: 2
type: file
a) " ’3 ()
g stat(g) g
f f
_ _J g _J
A A
length: 2
type: file
! . |
stat(g)’>

>

return values match

40

Prove implementation meets specification

length: 2
type: file
a) N ’5 4) (B
g stat(g) L unlink(g) |4
f f fill f
\ W, _), _),
A A A
length: 2
type: file
. | |
’ stat(g)’>

unlink(g)>

>

return values match

40

Prove implementation meets specification

length: 2
type: file
a) - ’5 () (B
g stat(g) L unlink(g) |4
f f fill f
_ _J g _J g _J
A A A
length: 2
type: file
\ 4 \/ v
stat(g)’>

unlink(g)>

>

disk continues to relate
return values match to abstract state

40

DFSCQ Design

directory
name cache

inode
k-indirect blocks
dirty blocks

block allocator
free-bit cache
avoid re-use

logging
checksums
deferred commit

log-bypass API

buffer cache

41

Many single-layer optimizations

directory
o Affect only proof of single layer name cache

inode
k-indirect blocks
dirty blocks

block allocator
free-bit cache
avoid re-use

logging
checksums
deferred commit

log-bypass API

buffer cache

42

Many single-layer optimizations

directory
o Affect only proof of single layer name cache

inode
k-indirect blocks
dirty blocks

block allocator
cache free blocks free-bit cache

avoid re-use

logging
checksums
deferred commit

log-bypass API

buffer cache

42

Many single-layer optimizations

directory
o Affect only proof of single layer name cache

inode
k-indirect blocks
dirty blocks

block allocator
free-bit cache
avoid re-use

cache free blocks

improves performance with logging

no change to abstraction > checksums
leferred commit

’log-bypass API

buffer cache

42

Cross-layer optimizations

e Break abstraction
boundaries

« Complicate proofs

e Good for performance

43

directory
name cache

inode
k-indirect blocks
dirty blocks

block allocator
free-bit cache
avoid re-use

logging
checksums
deferred commit

log-bypass API

buffer cache

Cross-layer optimizations

e Break abstraction
boundaries

« Complicate proofs

e Good for performance

directory
name cache

|

inode

dirty blocks

track dirty blocks in the];indirect blocks

cache

J

block allocator
free-bit cache
avoid re-use

logging
checksums
deferred commit

log-bypass API

buffer cache

43

Cross-layer optimizations

e Break abstraction
boundaries

« Complicate proofs

e Good for performance

directory

records dirent offset from
>name cache

inode layer
inode
track dirty blocks in the k-|(rj1.d!cre(t:ﬁ bllc<>cks
cache irty blocks

J

block allocator
free-bit cache
avoid re-use

logging
checksums
deferred commit

log-bypass API

buffer cache

43

Implementation and proof

e Extend FSCQ [SOSP '15]
e 75,000 lines of Coqg (compared to 31,000 in FSCQ)

Coqg

specification
code
proofs

ok

Coq proof
checker

44

Running DFSCQ

code
extraction Haskell

Coq / implementation

code

45

Running DFSCQ

code
extraction Haskell
Coq/implementaﬁon GHC DFSCQ FUSE
code + server
Haskell

FUSE interface

45

Performance evaluation

e Several workloads

e micro benchmarks

e application workloads

e Compare with ext4 in default mode

 Running on an SSD on a desktop

(see paper for more results)

46

DFSCQ is competitive with ext4

B FsCQ [DFSCQ MW ext4
400

320
240

files/s

160
80

0

smallfile

47

DFSCQ is competitive with ext4

B FSCQ [DFSCQ M ext4

400 180
320 144
© 240 » 108
&g m
E 160 2 72
80 36

0
smallfile largefile

0

47

DFSCQ is competitive with ext4

B FSCQ [DFSCQ M ext4

400 180

320 144

» 240 v 108
4 m

E 160 2 72

80 36

0) 0

smallfile largefile

« DFSCQ still has high CPU overhead compared to ext4

o Haskell code allocates large amounts of memory

47

DFSCQ outperforms ext4 on mailbench

B FsSCQ " DFSCQ B ext4

mailbench

48

DFSCQ outperforms ext4 on mailbench

B FsSCQ " DFSCQ B ext4

mailbench

 mailbench simulates a gmail-like mail server

e metadata and fsync-heavy workload

48

SQLite on DFSCQ is competitive with ext4

B FSCQ ! DFSCQ B ext4
80

64
48

txns/s

32
16

0]
TPC-C on SQLite

49

SQLite on DFSCQ is competitive with ext4

B FSCQ ! DFSCQ B ext4
80

64
48

txns/s

32
16

0

TPC-C on SQLite

 Write-heavy database workload

« DFSCQ issues less |/0O, but has higher CPU overhead

49

Future work

e Reduce CPU overhead

 Concurrency

50

Summary

e DFSCQ: verified, efficient, crash-safe file system

* Precise tree-based specification of
deferred commit and log-bypass writes

e Proof that implementation meets specification

e Performance on par with Linux ext4

https:/github.com/mit-pdos/fscq

51

https://github.com/mit-pdos/fscq

Backup slides

ext4 async commit + log-bypass bug
verification architecture diagram
write-ahead logging

group commit

log-bypass writes

deferred commit and log-bypass perf
spec example

fsync(2)

atomic write

FUSE architecture

LOC

52

Optimizations are hard to implement correctly

Subtle interaction between optimizations
 bug where crash could leak data in Linux ext4
e discovered after 6 years

ext4 now forbids both optimizations

Author: Jan Kara <jack@suse.cz>
Date: Tue Nov 25 20:19:17 2014 -0500

ext4: forbid journal_async_commit in data=ordered mode

[...]

53

Approach to avoid bugs: verification

specification

application verify applications
"""""""""" specification

file system verify FS correct
"""""""""" specification

disk hardware

o4

Write-ahead logging

create(‘d/a’) > D (address, block)

o System calls can update multiple disk blocks

95

Write-ahead logging

create(‘d/a’)

D (address, block)

System calls can update multiple disk blocks

Logging ensures all updates are persisted or none
even If computer crashes

disk

data

95

Deferred commit enables high throughput

disk

data log

56

Deferred commit enables high throughput

1. Buffer system calls in memory

memory

disk

data log

56

Deferred commit enables high throughput

1. Buffer system calls in memory

= prename(‘d/a’, €‘d/b’)

memory

disk

data log

56

Deferred commit enables high throughput

1. Buffer system calls in memory

2. fsync() flushes cached transactions
to the on-disk log in a batch

=» fsync(d’)

memory

disk

data log

56

Deferred commit enables high throughput

1. Buffer system calls in memory

2. fsync() flushes cached transactions
to the on-disk log in a batch

=» fsync(d’)

memory

disk |

data

56

Log-bypass writes avoid doubling data writes

1. Record metadata updates in log as

= create(‘d/a’) usual
transaction
cache ! ’
disk
data log

S/

Log-bypass writes avoid doubling data writes

1. Record metadata updates in log as

usual
- write(<d/a’ [
transaction
cache ! ’
disk
data log

S/

Log-bypass writes avoid doubling data writes

1. Record metadata updates in log as

usual
= write(‘d/a’ :.) 2. Bypass log for file data
transaction
cache ’
disk
data log

S/

Log-bypass writes avoid doubling data writes

1. Record metadata updates in log as

usual
= write(‘d/a’,...)

2. Bypass log for file data

transaction

cache)
disk .

data log

S/

Deferred commit and log bypass matter in
practice

fdatasync every 10 MB
to an SSD

ext4 performance largefile

synchronous 120 MB/s

+ deferred commit 150 MB/s

+ log-bypass 300 MB/s

58

Specifications

SPEC unlink(cwd_tino, pathname)
PRE disk: tree_rep(tree_seq)
POST disk: tree_rep(tree_seq ++ [new_tree]) /\

new_tree = tree_prune(tree_seq.latest, cwd_ino, pathname)
CRASH disk: tree_intact(tree_seq ++ [new_tree])

59

POSIX manual gives complicated specification

fsync() flushes modified buffer cache pages for fd to the disk
device so that all changed information can be retrieved even
after the system crashes or is rebooted. fsync() also flushes

metadata information associated with the file (see inode(7)).

fdatasync() is similar to fsync(), but does not flush modified

metadata unless that metadata is needed in order to allow a
subsequent data retrieval to be correctly handled.

paraphrase of fsync(2) manpage

e not clear enough about crash behavior

60

Evaluating the specification: atomic write
pattern

I f
L‘ Jename()
tmpfile

Goal: on crash f either:
- doesn’t exist

- or contains |

61

Proved atomic write pattern crash safe

def atomic_write(data, name):

with open(tmpfile, "cw") as f: -
ftruncate(f, len(data)) orepare tmpfile
write(f, data))
fdatasync(f) persist data
rename(tmpfile, name) move to destination

fsync(dirname(name)) persist metadata

62

Proved atomic write pattern crash safe

def atomic_write(data, name):

with open(tmpfile, "cw") as f: -

ftruncate(f, len(data)) orepare tmpfile

write(f, data))

fdatasync(f) persist data
rename(tmpfile, name) move to destination
fsync(dirname(name)) persist metadata

Specification is sufficient to prove
application-level properties

62

Atomic write Is correct

- A
/tmp f { f ﬁi’me
_ J

crash states:

a)
/tmp
_ _J

)

[

___/

)

&)
/ iname
. _J

(just after rename)

Specification: on crash, name either does not exist

or contains data

63

DFSCQ runs ordinary Linux programs using

FUSE
DFSCQ FUSE
server
$ mv src dst
$ git clone

A J
' userspace

FUSE
Linux kernel

64

Effort to implement DFSCQ

e Total of 75,000 lines of verified code, specs, and proofs in Coq
« Compared to FSCQ’s 31,000 lines
e 4 800 lines of implementation

e Took 5 authors 2 years (but less than 10 person years)

@ CHL infrastructure
© FSimpl and proofs
@ Top-level API

© Tree sequences

65

