Ownership: A Distributed Futures System for Fine-Grained Tasks
Stephanie Wang*, Eric Liang*, Edward Oakes*, Ben Hindman, Frank Luan, Audrey Cheng, Ion Stoica
UC Berkeley, *and Anyscale

Abstract

The distributed futures interface is an increasingly popular choice for building distributed applications that manipulate large amounts of data. Distributed futures are an extension of RPC that combines futures and distributed memory: a distributed future is a reference whose eventual value may be stored on a remote node. An application can then express distributed computation without having to specify when or where execution should occur and data should be moved.

Recent distributed futures applications require the ability to execute fine-grained computations, i.e., tasks that run on the order of milliseconds. Compared to coarse-grained tasks, fine-grained tasks are difficult to execute with acceptable system overheads. In this paper, we present a distributed futures system for fine-grained tasks that provides fault tolerance without sacrificing performance. Our solution is based on a novel concept called ownership, which assigns each object a leader for system operations. We show that this decentralized architecture can achieve horizontal scaling, 1ms latency per task, and fast failure handling.

1 Introduction

RPC is a standard for building distributed applications because of its generality and because its simple semantics yield high-performance implementations. The original proposal uses synchronous calls that copy return values back to the caller (Figure 2a). Several recent systems [4, 34, 37, 45] have extended RPC so that, in addition to distributed communication, the system may also manage data movement and parallelism on behalf of the application.

Data movement. Pass-by-value semantics require all RPC arguments to be sent to the executor by copying them directly into the request body. Thus, performance degrades with large data. Data copying is both expensive and unnecessary in cases like Figure 2a, where a process executes an RPC over data that it previously returned to the same caller.

To reduce data copies, some RPC systems use distributed memory [16, 27, 37, 40, 41]. This allows large arguments to be passed by reference (Figure 2b), while small arguments can still be passed by value. In the best case, arguments passed by reference to an RPC do not need to be copied if they are already on the same node as the executor (Figure 2b). Note that, like traditional RPC, we make all values immutable to simplify the consistency model and implementation.

Parallelism. RPCs are traditionally blocking, so control is only returned to the caller once the reply is received (Figure 2a). Futures are a popular method for extending RPC with asynchrony [8, 29], allowing the system to execute functions in parallel with each other and the caller. With composition [29, 37], i.e., passing a future as an argument to another RPC, the application can also express the parallelism and dependencies of future RPCs. For example, in Figure 2c, add is invoked at the beginning of the program but only executed by the system once a and b are computed.

Distributed futures are an extension of RPC that combines futures with distributed memory: a distributed future is a reference whose eventual value may be stored on a remote node (Figure 2d). An application can then express distributed computation without having to specify when or where execution should occur and data should be moved. This is an increasingly popular interface for developing distributed applications that manipulate large amounts of data [4, 34, 37, 45].

As with traditional RPC, a key goal is generality. To achieve this, the system must minimize the overhead of each function call [13]. For example, the widely used gRPC provides horizontal scalability and sub-millisecond RPC latency, making...
it practical to execute millions of fine-grained functions, i.e. millisecond-level “tasks”, per second [2].

Similarly, there are emerging examples of large-scale, fine-grained applications of distributed futures, including reinforcement learning [34], video processing [22,43], and model serving [49]. These applications must optimize parallelism and data movement for performance [39,43,49], making distributed futures apt. Unfortunately, existing systems for distributed futures are limited to coarse-grained tasks [37].

In this paper, we present a distributed futures system for fine-grained tasks. While others [34,37,45] have implemented distributed futures before, our contribution is in identifying and addressing the challenges of providing fault tolerance for fine-grained tasks without sacrificing performance.

The primary challenge is that distributed futures introduce shared state between processes. In particular, an object and its metadata are shared by its reference holder(s), the RPC executor that creates the object, and its physical location(s). To ensure that each reference holder can dereference the value, the processes must coordinate, a difficult problem in the presence of failures. In contrast, traditional RPC has no shared state, since data is passed by value, and naturally avoids coordination, which is critical to scalability and low latency.

For example, in Figure 2a, once worker 1 copies a to the driver, it does not need to be involved in the execution of the downstream add task. In contrast, worker 1 stores a in Figure 2d, so the two workers must coordinate to ensure that a is available long enough for worker 2 to read. Also, worker 1 must garbage-collect a once worker 2 executes add and there are no other references. Finally, the processes must coordinate to detect and recover from the failure of another process.

The common solution in previous systems is to use a centralized master to store system state and coordinate these operations [34,37]. A simple way to ensure fault tolerance is to record and replicate metadata at the master synchronously with the associated operation. For example, in Figure 2d, the master would record that add is scheduled to worker 2 before dispatching the task. Then, it can correctly detect c’s failure if worker 2 fails. However, this adds significant overhead for applications with a high volume of fine-grained tasks [32,51].

Thus, decentralizing the system state is necessary for scalability. The question is how to do so without complicating coordination. The key insight in our work is to exploit the application structure: a distributed future may be shared by passing by reference, but most distributed futures are shared within the scope of the caller. For example, in Figure 1, a_future is created then passed to add in the same scope.

We thus propose ownership, a method of decentralizing system state across the RPC executors. In particular, the caller of a task is the owner of the returned future and all related metadata. In Figure 2d, the driver owns a, b, and c.

This solution has three advantages. First, for horizontal scalability, the application can use nested tasks to “shard” system state across the workers. Second, since a future’s owner is the task’s caller, task latency is low because the required metadata writes, though synchronous, are local. This is in contrast to an application-agnostic method of sharding, such as consistent hashing. Third, each worker becomes in effect a centralized master for the distributed futures that it owns, simplifying failure handling.

The system guarantees that if the owner of a future is alive, any task that holds a reference to that future can eventually dereference the value. This is because the owner will coordinate system operations such as reference counting, for memory safety, and lineage reconstruction, for recovery. Of course, this is not sufficient if the owner fails.

Here, we rely on lineage reconstruction and a second key insight into the application structure: in many cases, the references to a distributed future are held by tasks that are a descendant of the failed owner. The failed task can be recreated through lineage reconstruction by its owner, and the descendant tasks will also be recreated in the process. Therefore, it is safe to fate-share any tasks that have a reference to a distributed future with the future’s owner. As we expect failures to be relatively rare, we argue that this reduction in system overheads and complexity outweighs the cost of additional re-execution upon a failure.

In summary, our contributions are:

- A decentralized system for distributed futures with transparent recovery and automatic memory management.
- A lightweight technique for transparent recovery based on lineage reconstruction and fate sharing.
- An implementation in the Ray system [34] that provides high throughput, low latency, and fast recovery.

2 Distributed Futures

2.1 API

The key benefit of distributed futures is that the system can transparently manage parallelism and data movement on behalf of the application. Here, we describe the API (Table 1).

To spawn a task, the caller invokes a remote function that immediately returns a DFut (Table 1). The spawned task comprises the function and its arguments, resource requirements, etc. The returned DFut refers to the object whose value will be returned by the function. The caller can dereference the DFut through get, a blocking call that returns a copy of the object. The caller can delete the DFut, removing it from scope and allowing the system to reclaim the value. Like other systems [34,37,45], all objects are immutable.

After the creation of a DFut through task invocation, the caller can create other references in two ways. First, the caller can pass the DFut as an argument to another task. DFut task arguments are implicitly dereferenced by the system. Thus, the task will only begin once all upstream tasks have finished, and the executor sees only the DFut values.
Table 1: Distributed futures API. The full API also includes an actor creation call. A task may also return a DFut to its caller (nested DFuts are automatically flattened).

<table>
<thead>
<tr>
<th>Operation</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(DFut x) → DFut</td>
<td>Invoke the remote procedure f, and pass x by reference. The system implicitly dereferences x to its Value before execution. Creates and returns a distributed future, whose value is returned by f.</td>
</tr>
<tr>
<td>get(DFut x) → Value</td>
<td>Dereference a distributed future. Blocks until the value is computed and local.</td>
</tr>
<tr>
<td>del(DFut x) → Value</td>
<td>Delete a reference to a distributed future from the caller’s scope. Must be called by the program.</td>
</tr>
<tr>
<td>Actor.f(DFut x) → DFut</td>
<td>Invoke a stateful remote procedure. f must execute on the actor referred to by Actor.</td>
</tr>
<tr>
<td>shared(DFut x) → SharedDFut</td>
<td>Returns a SharedDFut that can be used to pass x to another worker, without dereferencing the value.</td>
</tr>
<tr>
<td>f(SharedDFut x) → DFut</td>
<td>Passes x as a first-class DFut. The system dereferences x to the corresponding DFut instead of the Value.</td>
</tr>
</tbody>
</table>

Table 3: Distributed futures applications.

Second, the DFut can be passed or returned as a first-class value [21], i.e. passed to another task without dereferencing. Table 1 shows how to cast a DFut to a SharedDFut, so the system can differentiate when to dereference arguments. We call the process that receives the DFut a borrower, to differentiate it from the original caller. Like the original caller, a borrower may create other references by passing the DFut or casting again to a SharedDFut (creating further borrowers).

Like recent systems [4, 34, 45], we support stateful computation with actors. The caller creates an actor by invoking a remote constructor function. This immediately returns a reference to the actor (an ARef) and asynchronously executes the constructor on a remote process. The ARef can be used to spawn tasks bound to the same process. Similar to DFuts, ARefs are first-class, i.e. the caller may return or pass the ARef to another task, and the system automatically collects the actor process once all ARefs have gone out of scope.

2.2 Applications

Typical applications of distributed futures are those for whom performance requires the flexibility of RPC, as well as optimization of data movement and parallelism. We describe some examples here and evaluate them in Section 5.2.

Distributed futures have previously been explored for data-intensive applications that cannot be expressed or executed efficiently as data-parallel programs [34, 37]. Ciel identified the key ability to dynamically specify tasks during execution, e.g., based on previous results, rather than specify the entire graph upfront [37]. This enabled new workloads such as dynamic programming, which is recursive by nature [54].

Our goal is to expand the application scope to include those with fine-grained tasks that run in the milliseconds. We also explore the use of actors and first-class distributed futures.

Model serving. The goal is to reduce request latency while maximizing throughput, often by using model replicas. Depending on the model, a latency target might be 10-100ms [20]. Typically, an application-level scheduling policy is required, e.g., for staged rollout of new models [46].

Figure 3a shows an example of a GPU-based image classification pipeline. Each client passes its input image to a Preprocess task, e.g., for resizing, then shares the returned DFut with a Router actor. Router implements the scheduling policy and passes the DFut by reference to the chosen Model actor. Router then returns the results to the clients.

Actors improve performance in two ways: (1) each Model keeps weights warm in its local GPU memory, and (2) Router buffers the preprocessed DFuts until it has a batch of requests to pass to a Model, to leverage GPU parallelism for throughput. With dynamic tasks, the Router can also choose to flush its buffer on a timeout, to reduce latency from batching.

First-class distributed futures are important to reduce routing overhead. They allows the Router to pass the references of the preprocessed images to the Model actors, instead of copying these images. This avoids creating a bottleneck at the Router, which we evaluate in Figure 15a. While the application could use an intermediate storage system for preprocessed images, it would then have to manage additional concerns such as garbage collection and failures.

Online video processing. Video processing algorithms often have complex data dependencies that are not well supported by data-parallel systems such as Apache Spark [22, 43]. For example, video stabilization (Figure 3b) works by tracking objects between frames (Flow), taking a cumulative sum of these trajectories (CumSum), then applying a moving average (Smooth). Frame-to-frame dependencies are common, such as the video decoding state stored in an actor in Figure 3b. Each stage runs in 1-10s of milliseconds per frame.

Safe and timely garbage collection in this setting can be challenging because a single object (e.g., a video frame) may be referenced by multiple tasks. Live video processing is also latency-sensitive: output must be produced at the same frame rate as the input. Low latency relies on pipelined parallelism between frames, as the application cannot afford to wait for multiple input frames to appear before beginning execution.

With distributed futures, the application can specify the logical task graph dynamically, as input frames appear. Meanwhile, the system manages the physical execution, i.e. pipelined parallelism and garbage collection, according to the specified graph. Concurrent video streams can easily be
3 Overview

3.1 Requirements

The system guarantees that each DFut can be dereferenced to its value. This involves three problems: automatic memory management, failure detection, and failure recovery.

Automatic memory management is a system for dynamic memory allocation and reclaimation of objects. The system must decide at run time whether an object is currently referenced by a live process, e.g., through reference counting [42].

Failure detection is the minimum functionality needed to ensure progress in the presence of failures. The system detects when a DFut cannot be dereferenced due to worker failure.

With distributed memory but no futures, this is straightforward because the location of the value is known by the time the reference is created. In Figure 4a, for example, the driver learns that a is stored on worker 1 and could then attach the location when passing a to worker 2. Then, when worker 2 receives add, it can detect a’s failure.

The addition of futures complicates failure detection because references can be created before the value. Even the future location of the value may not be known at reference creation time. Of course, the system could wait until a task has been scheduled before returning the reference to the caller. However, this would defeat the purpose of futures as an asynchronous construct. It is also impractical because a realistic scheduler must be able to update its decision at run time, e.g., according to changes in the environment such as resource availability and worker failures.

Thus, it is possible that there are no locations for a when worker 2 receives the add RPC in Figure 4b. Then, worker 2 must decide whether f is still executing, or if it has failed. If it is the former, then worker 2 should wait. But if there is a failure, then the system must recover a. To solve this problem, the system must record the locations of all tasks, i.e. pending objects, in addition to created objects.

Failure recovery. The system must also provide a method of recovering from a failed DFut. The minimum requirement is to throw an error to the application if it tries to dereference a failed DFut. We further provide an option for transparent recovery, i.e. the system will recover a failed DFut’s value.

With futures but no distributed memory, if a process fails, then we will lose the reply of any pending task on that process. Assuming idempotence, this can be recovered through retries, a common approach for pass-by-value RPC. For example, in Figure 5a, the driver recovers by resubmitting add(a,b). Failure recovery is simple because all data is passed by value.

With distributed memory, however, tasks can also contain arguments passed by reference. Therefore, a node failure can cause the loss of an object value that is still referenced, as b is in Figure 4b. A common approach to this problem is to record each object’s lineage, or the subgraph that produced the object, during runtime [17, 30, 56]. The system then walks a lost object’s lineage and recursively reconstructs the object and its dependencies through task re-execution. This approach reduces the runtime overhead of logging, since the data itself is not recorded, and the work that must be redone after a partial failure, since objects cached in distributed memory do not need to be recomputed. Still, achieving low run-time overhead is difficult because the lineage itself must be recorded and collected at run time and it must survive failures.

Note that we focus specifically on object recovery and, like previous systems [34, 37, 56], assume idempotence for correctness. Thus, our techniques are directly applicable to idempotent functions and actors with read-only, checkpointable, or transient state, as we evaluate in Figure 15c. Although it is not our focus, these techniques may also be used in conjunction with known recovery techniques for actor state [17, 34] such as recovery for nondeterministic execution [52].

Metadata requirements. In summary, during normal operation, the system must at minimum record (1) the location(s) of each object’s value, so that reference holders can retrieve it, and (2) whether the object is still referenced, for safe garbage collection. For failure detection and recovery, the system must further record, respectively, (3) the location of each pending object, i.e. the task location, and (4) the object lineage.

The key question is where and when to record this system metadata such that it is consistent and fault-tolerant. By consistent, we mean that the system metadata matches the

1 Unrelated to the more standard definition of replica consistency [50].
Figure 6: Distributed futures systems. (a) An application. (b) Master manages metadata and object failures. (c) Workers write metadata asynchronously, coordinate failure handling with leases. (d) Workers manage metadata. Worker 1 handles failures for workers 2 and 3. Worker 1 failure is handled by A’s owner elsewhere in the cluster. By fault-tolerant, we mean that the metadata should survive individual node failures.

In some cases, it is safe for metadata to be asynchronously updated, i.e., there is a transient mismatch between the system metadata and the system state. For example, the system may transiently believe that an object x is still on node A even though it has been removed. This is safe because a reference holder can resolve the inconsistency by asking A if it has x.

On the other hand, metadata needed for failure handling should ideally be synchronously updated. For example, the metadata should never say that a task T is on node A when it is really on node B. In particular, if node A then fails, the system would incorrectly conclude that T has failed. As we will see next, synchrony simplifies fault tolerance but can add significant runtime overhead if done naively.

3.2 Existing solutions

Centralized master. Failure handling is simple with a synchronously updated centralized master, but this design can also add significant runtime overhead. For example, failure detection requires that the master record a task’s scheduled location before dispatch (Figure 6b). Similarly, the master must record every new reference before it can be used. This makes the master a bottleneck for scalability and latency.

The master can be sharded for scalability, but this can complicate operations that coordinate multiple objects, such as garbage collection and lineage reconstruction. Also, the latency overhead is fundamental. Each task invocation must first contact the master, adding at minimum one round-trip to the critical path of execution, even without replicating the metadata for fault tolerance. This overhead can be detrimental when the task itself is milliseconds long, and especially so if the return value is small enough to be passed by value. Small values may be stored in the master directly as an optimization, but still require 1 RTT for retrieval [38].

Distributed leases. Decentralization can remove such bottlenecks, but often leads to complex coordination schemes. One approach is to use distributed leases [19]. This is similar to a centralized master that is updated asynchronously.

As an example, consider asynchronous task location updates (Figure 6c). To account for a possibly stale master, the worker nodes must coordinate to detect task failures, in this case using leases. Each worker node acquires a lease for each locally queued task and repeatedly renews the lease until the task has finished. For example, in Figure 6c, worker 3 can detect a failure of B by waiting for worker 2’s lease to expire.

This design is horizontally scalable through sharding and reduces task latency, since metadata is written asynchronously. However, the reliance on timing to reconcile system state can slow recovery (Figure 14). Furthermore, this method of decentralization introduces a new problem: the workers must also coordinate on who should recover an object, i.e., re-execute the creating task. This is trivial in the centralized scheme, since the master coordinates all recovery operations.

3.3 Our solution: Ownership

The key insight in our work is to “shard” the centralized master, for scalability, but to do so based on the application structure, for low run-time overhead and simple failure handling. In ownership, the worker that calls a task stores the metadata related to the returned DFut. Like a centralized master, it coordinates operations such as task scheduling, to ensure it knows the task location, and garbage collection. For example, in Figure 6d, worker 1 owns X and Y.

The reason for choosing the task’s caller as the owner is that in general, it is the worker that accesses the metadata most frequently. The caller is involved in the initial creation of the DFut, via task invocation, as well as the creation of other references, by passing the DFut to other RPCs. Thus, task invocation latency is minimal because the scheduled location is written locally. Similarly, if the DFut stays in the owner’s scope, the overhead of garbage collection is low because the DFut’s reference count can be updated locally when the owner passes the DFut to another RPC. These overheads can be further reduced for small objects, which can be passed by value as if without distributed memory (see Section 4.2).

Of course, if all tasks are submitted by a single driver, as in BSP programs, ownership will not scale beyond the driver’s throughput. Nor indeed will any system for dynamic tasks. However, with ownership, the application can scale horizontally by distributing its control logic across multiple nested tasks, as opposed to an application-agnostic method such as consistent hashing (Figure 12e). Furthermore, the worker processes hold much of the system metadata. This is in contrast to previous solutions that push all metadata into the system’s centralized or per-node processes, limiting the vertical scalability of a single node with many worker processes (Figure 12).

However, there are problems that are simpler to solve with a fully centralized design, assuming sufficient performance: First-class futures. First-class futures (Section 2) allow non-owning processes to reference a DFut. While many applications can be written without first-class futures (Figure 3b),
they are sometimes essential for performance. For example, the model serving application in Figure 3a uses first-class futures to delegate task invocation to a nested task, without having to dereference and copy the arguments.

A first-class DFut may leave the owner’s scope, so we must account for this during garbage collection. We avoid centralizing the reference count at the owner, as this would defeat the purpose of delegation. Instead, we use a distributed hierarchical reference counting protocol (Section 4.2). Each borrower stores a local reference count for the DFut on behalf of the owner (Table 2) and notifies the owner when the local reference count reaches zero. The owner decides when the object is safe to reclaim. We use a reference counting approach as opposed to tracing [42] to avoid global pauses.

Owner recovery. If a worker fails, then we will also lose its owned metadata. For transparent recovery, the system must recover the worker’s state on a new process and reassociate state related to the previously owned DFuts, including any copies of the value, reference holders, and pending tasks.

We choose a minimal approach that guarantees progress, at the potential cost of additional re-execution on a failure: we _fate share_ the object and any reference holders with the owner, then use _lineage reconstruction_ to recover the object and any of the owner’s fate-shared children tasks (Section 4.3). This method adds minimal run-time overhead and is correct, i.e. the application will recover to a previous state and the system guarantees against resource leakage. A future extension is to persist the owner’s state to minimize recovery time at the cost of additional recovery complexity and run-time overhead.

4 Ownership Design

Each node in the cluster hosts one to many workers (usually one per core), one scheduler, and one object store (Figure 7). These processes implement future resolution, resource management, and distributed memory, respectively. Each node and worker process is assigned a unique ID.

Workers are responsible for the resolution, reference counting, and failure handling of distributed futures. Each worker executes one task at a time and can invoke other tasks. The root task is executed by the “driver”.

Each task has a unique _TaskID_ that is a hash of the parent task’s ID and the number of tasks invoked by the parent task so far. The root _TaskID_ is assigned randomly. Each task may return multiple objects, each of which is assigned an _ObjectID_ that concatenates the _TaskID_ and the object’s index. A _DFut_ is a tuple of the _ObjectID_ and the owner’s address (Owner). The worker stores one record per future that it has in scope in its local _ownership table_ (Table 2). A _DFut_ borrower records a subset of these fields (* in Table 2). When a _DFut_ is passed as an argument to a task, the system implicitly resolves the future’s value, and the executing worker stores only the ID, Owner, and Value for the task duration. The worker also caches the owner’s stored _Locations_.

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>The ObjectID. Also used as a distributed memory key.</td>
</tr>
<tr>
<td>Owner</td>
<td>Address of the owner (IP address, port, WorkerID).</td>
</tr>
<tr>
<td>Value</td>
<td>(1) Empty if not yet computed, (2) Pointer if in distributed memory, or (3) Inlined value, for small objects (Section 4.2).</td>
</tr>
<tr>
<td>References</td>
<td>A list of reference holders: Number of dependent tasks and a list of borrower addresses (Section 4.2 and appendix A).</td>
</tr>
<tr>
<td>Task</td>
<td>Specification for the creating task. Includes the ObjectIDs and Owners of any DFuts passed as arguments.</td>
</tr>
<tr>
<td>Locations</td>
<td>If Value is empty, the location of the task. If Value is a pointer to distributed memory, then the locations of the object.</td>
</tr>
</tbody>
</table>

Table 2: Ownership table. The owner stores all fields. A borrower (Section 3.2) only stores fields indicated by the *.

An actor is a stateful task that can be invoked multiple times. Like objects, an actor is created through task invocation and _owned_ by the caller. The ownership table is also used to locate and manage actors: the _Location_ is the actor’s address. Like a _DFut_, an _ARef_ (an actor reference) is a tuple of the ID and Owner and can be passed as a first-class value to other tasks.

A worker requests resources from the scheduling layer to determine task placement (Section 4.1). We assume a decentralized scheduler for scalability: each scheduler manages local resources, can serve requests from remote workers, and can redirect a worker to a remote scheduler.

The distributed memory layer (Section 4.2) consists of an immutable distributed object store (Figure 7d) with _Locations_ stored at the owner. The _Locations_ are updated asynchronously. The object store uses shared memory to reduce copies between reference holders on the same node.

Workers store, retrieve, reclaim, and recover large objects in distributed memory (Figure 7f). The scheduling layer sends requests to distributed memory to fetch objects between nodes according to worker requests (Figure 7g).

4.1 Task scheduling

We describe how the owner coordinates task scheduling. At a high level, the owner dispatches each task to a location chosen by the distributed scheduler. This ensures that the task location in the ownership table is updated synchronously with dispatch. We assume an abstract scheduling policy that takes
in resource requests and returns the ID of a node where the resources should be allocated. The policy may also update its decision, e.g., due to changes in resource availability.

Figure 8c shows the protocol to dispatch a task. Upon task invocation, the caller, i.e., the owner of the returned DFut, first requests resources from its local scheduler. The request is a tuple of the task’s required resources (e.g., ["CPU": 1]) and arguments in distributed memory. If the policy chooses the local node, the scheduler accepts the request: it fetches the arguments, allocates the resources, then leases a local worker to the owner. Else, the scheduler rejects the request and redirects the owner to the node chosen by the policy.

In both cases, the scheduler responds to the owner with the new location: either the ID of the leased worker or the ID of another node. The owner stores this new location in its local ownership table before dispatching the task to that location. If the request was granted, the owner sends the task directly to the leased worker for execution; otherwise, it repeats the protocol at the next scheduler.

Thus, the owner always dispatches the task to its next location, ensuring that the task’s pending location (Table 2) is synchronously updated. This also allows the owner to bypass the scheduler by dispatching a task directly to an already leased worker, if the task’s resource requirements are met. For example, in Figure 8d, worker 1 reuses the resources leased from node 2 in Figure 8c to execute C. The owner returns the lease after a configurable expiration time, or when it has no more tasks to dispatch. We currently do not reuse resources for tasks with different distributed memory dependencies, since these are fetched by the scheduler. We leave other policies for lease revocation and worker reuse for future work.

The worst-case number of RTTs before a task executes is higher than in previous solutions because each policy decision is returned to the owner (Figure 8c). However, the throughput of previous solutions is limited (Figure 12) because they cannot support direct worker-to-worker scheduling (Figure 8d). This is because workers do not store system state, and thus all tasks must be routed through the master or per-node scheduler to update the task location (Figures 8a and 8b).

Actor scheduling. The system schedules actor constructor tasks much like normal tasks. After completion, however, the owner holds the worker’s lease until the actor is no longer referenced (Section 4.2) and the worker can only execute actor tasks submitted through a corresponding ARef.

A caller requests the actor’s location from the owner using the ARef’s Owner field. The location can be cached and requested again if the actor restarts (Section 4.3). The caller can then dispatch tasks directly to the actor, as in Figure 8d, since the resources are leased for the actor’s lifetime. For a given caller, the actor executes tasks in the order submitted.

4.2 Memory management

Allocation. The distributed memory layer consists of a set of object store nodes, with locations stored at the owner (Figures 9b to 9d). It exposes a key-value interface (Figure 9a). The object store may replicate objects for efficiency but is not required to handle recovery; if there are no copies of an object, a Get call will block until a client (i.e., a worker) creates the object.

Small objects may be faster to copy than to pass through distributed memory, which requires updating the object directory, fetching the object from a remote node, etc. Thus, at object creation time, the system transparently chooses based on size whether to pass by value or by reference.

Objects over a configurable threshold are stored in the distributed object store (step 1, Figure 9b) and returned by reference to the owner (step 2). This reduces the total number of copies, at the cost of requiring at least one IPC to the distributed object store for Get (steps 4-5, Figure 9c). Small objects are returned by value to the owner (step 6, Figure 9c), and each reference holder is given its own copy. This produces more copies in return for faster dereferencing.

The initial copy of a large object is known as the primary. This copy is pinned (step 1, Figure 9b) until the owner releases the object (step 8, Figure 9d) or fails. This allows the object store to treat additional capacity as an LRU cache without having to consult the owners about which objects are safe to evict. For example, the secondary copy of X created on node 3 in Figure 9c is cached to reduce Get and recovery time (Section 4.3) but can be evicted under memory pressure.

Dereferencing. The system dereferences a task’s DFut arguments before execution. The task’s caller first waits for the Value field in its local ownership table to be populated (Fig-
<table>
<thead>
<tr>
<th>Operation</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create(ObjID o, Value v)</td>
<td>Store an object.</td>
</tr>
<tr>
<td>Pin(ObjID o, NodeID loc)</td>
<td>Pin o on loc until released. Returns false if loc failed.</td>
</tr>
<tr>
<td>Release(ObjID o)</td>
<td>Object o is safe to evict.</td>
</tr>
<tr>
<td>Get(ObjID o) → Value</td>
<td>Get the object value. May fetch copy from remote node.</td>
</tr>
</tbody>
</table>

Figure 9: (a) Distributed memory store API, and (b-d) Memory management for the program in Figure 6a. (1-2) B returns a large object X in distributed memory. The primary copy is pinned until all references have been deleted. (3) Worker 1 dispatches C once X is available. (4-5) Get the value from distributed memory (location lookup not shown). (6) C returns a small object Y directly to the owner. (7-8) Object reclamation.

Upon receiving a node or worker failure notification, each worker scans its local ownership table to detect a DFut failure. A DFut is considered failed in two cases: 1) loss of an owned object (Figure 10a), by comparing the Location field, or 2) loss of an owner (Figure 11a), by comparing the Owner field. We discuss the handling for these two cases next, using lineage reconstruction and fate sharing, respectively.

Note that a non-owner does not need to detect the loss of an object. For example, in Figure 10a, node 2 fails just as worker 3 receives C. When worker 3 looks up X at the owner, it may not find any locations. From worker 3’s perspective, this means that either node 2’s write to the directory was delayed, or node 2 failed. Worker 3 does not need to decide which it is; it simply waits for X’s owner to handle the failure.

Object recovery. The owner recovers a lost value through lineage reconstruction. During execution, the owner records the object’s lineage by storing each invoked Task in its ownership table (Table 2). Then, upon detecting a DFut failure, the owner resubmits the corresponding task (Figure 10b). The task’s arguments are recursively reconstructed, if needed.

Like previous systems [34, 37, 56], we can avoid lineage reconstruction if other copies of a required object still exist. Thus, when reconstructing an object, the owner will first try to locate and designate a secondary copy as the new primary. To increase the odds of finding a secondary copy, object reclamation (Section 4.2) is done lazily: the owner releases the primary copy once there are no more reference holders, but the copy is not evicted until there is memory pressure.

Often, the owner of an object will also own the objects in its lineage (Section 5.2). Thus, upon failure, the owner can locally determine the set of tasks to resubmit, with a recursive lookup of the Task fields. In some cases, an object’s lineage may also contain borrowed references. Then, the borrower requests reconstruction from the owner.

The owner can delete the Task field once the task has finished and all objects returned by reference will never be reconstructed again. When a worker returns an object by value, the owner can immediately delete the corresponding Task field. This is safe because objects passed by value do not require reconstruction (Section 3.1).

For an object passed by reference, the owner keeps a lineage reference count to determine when to collect the Task. The
count is incremented each time the \(\text{DFut} \) is passed to another task and decremented when that \(\text{Task} \) is itself collected. The owner collects a record after collecting both the \(\text{Task} \) and \(\text{Value} \) (Section 4.2) fields. We also plan to support object checkpointing to allow the lineage to be collected early.

Owner recovery. An owner failure can result in a “dangling pointer”: a \(\text{DFut} \) that cannot be dereferenced. This can happen if the object is simultaneously lost from distributed memory. For example, \(c \) in Figure 11a will hang if node 2 also fails.

We use *fate sharing* to ensure that the system can make progress upon an owner’s failure. First, all resources held by the owner and any reference holders are reclaimed. Specifically, upon notification of the owner’s failure, either the distributed object store frees the object (if it exists) or the scheduling layer reclaims the worker lease (if the owner is pending), shown in Figure 11b. All reference holders, i.e. borrowers and dependent tasks, also fate-share with the owner.

Then, to recover the fate-shared state, we rely on *lineage reconstruction*. In particular, the task or actor that was executing on the failed owner must itself have been owned by another process. That process will eventually resubmit the failed task. As the new owner re-executes, it will recreate its previous state, with no system intervention needed. For example, the owner of \(A \) in Figure 11a will eventually resubmit \(A \) (Figure 11b), which will again submit \(B \) and \(C \).

For correctness, we show that all previous reference holders are recreated, with the address of the new owner. Consider task \(T \) that computes the value of a \(\text{DFut} \) \(x \). \(T \) initially executes on worker \(W \) and re-executes on \(W' \) during recovery. The API (Section 2) gives three ways to create another reference to \(x \): (1) pass \(x \) as a task argument, (2) cast \(x \) to a \(\text{SharedDFut} \) then pass as a task argument, and (3) return \(x \) from \(T \).

In the two former cases, the new reference holder must be a child task of \(T \). In case (2), when \(x \) is passed as a first-class value, the child task can create additional reference holders by passing \(x \) again. All such reference holders are therefore descendants of \(T \). Then, when \(T \) re-executes on \(W' \), \(W' \) will recreate \(T \)'s descendants.

\(T \) can also return \(x \), which can be useful for returning a child task’s result without dereferencing with \(\text{get} \). Suppose \(T \) returns \(x \) to its parent task \(P \). Then, \(P \)'s worker becomes a borrower and will fate-share with \(W \). In this case, \(P \) is recovered by its owner, and again submits \(T \) and receives \(x \).

Thus, because any borrower of \(x \) must be a child or ancestor of \(T \), fate-sharing and re-execution guarantees that the borrower will be recreated with \(W' \) as the new owner. Note that for actors, this requires that an actor not store borrowed \(\text{DFuts} \) in its local state. Of course, this is only required for transparent recovery; the application may also choose to handle failures manually and rely on the system for failure detection only.

While fate-sharing and lineage reconstruction add minimal run-time overhead, it is not suitable for all applications. In particular, the application will fate-share with the driver. In fact, this is the same failure model offered by some BSP systems [3], which can be written as a distributed futures program in which the driver submits all tasks. As shown by these systems, this approach can be extended to reduce the re-execution needed during recovery. We leave such extensions, including application-level checkpointing (Section 5.2), and persistence of the ownership table, for future work.

Actor recovery. Actor recovery is handled through the same protocols. If an actor fails, its owner restarts the actor through lineage reconstruction, i.e. resubmitting the constructor task. If the owner fails, the actor and any \(\text{ARef} \) holders fate-share.

Unlike functions, actors have local state that may require recovery. This is out of scope for this work, but is an interesting future direction. Ownership provides the infrastructure to manage and restart actors, while other methods can be layered on top for transparent recovery of local state [17, 34, 52].

5 Evaluation

We study the following questions:

1. Under what scenarios is distributed futures beneficial compared to pass-by-value RPC?
2. How does the ownership architecture compare against existing solutions for distributed futures, in terms of throughput, latency, and recovery time?
3. What benefits does ownership provide for applications with dynamic, fine-grained parallelism?

We compare against three baselines: (1) a pass-by-value model with futures but no distributed memory, similar to Figure 2c, (2) a decentralized lease-based system for distributed futures (Ray v0.7), and (3) a centralized master for distributed futures (Ray v0.7 modified to write to a centralized master before task execution). All distributed futures systems use shared, unreplicated Redis for the global metadata store, with asynchronous requests. All systems use the Ray distributed scheduler and (where applicable) distributed object store. Ownership and pass-by-value use gRPC [2] for worker-to-worker communication.
to-to-worker communication. All benchmarks schedule tasks to predetermined nodes to reduce scheduling variation.

All experiments are run on AWS EC2. Global system metadata, such as an object directory, is hosted on the same node as the driver, where applicable. Unless stated otherwise, this “head node” is an m5.16xlarge instance. Other node configuration is listed inline. All benchmark code is available at [53].

5.1 Microbenchmarks

Throughput and scalability. The driver submits one nested task for every 5 worker nodes (m5.8xlarge). Each intermediate “driver” submits no-op tasks to its 5 worker nodes. We report the total throughput of the leaf tasks, which return either a short string (Figures 12a and 12b) or a 1MB blob (Figures 12c and 12d). The drivers are either colocated (Figures 12a and 12c) on the same m5.8xlarge node as the root driver, or spread (Figures 12b and 12d), each on its own m5.8xlarge node. We could not produce stable results for pass-by-value with large objects due to the lack of backpressure in our implementation.

At <60 nodes, the centralized and lease-based architectures achieve about the same throughput because the centralized master is not yet a bottleneck. In general, ownership achieves better throughput than either because it distributes some system operations to the workers. In contrast, the baselines handle all system operations in the global or per-node processes.

The gap between ownership and the baselines is more significant with small return values (Figures 12a and 12b). For these, ownership matches pass-by-value because small objects are returned directly to their owner. The baseline systems could implement a similar optimization, e.g., by inlining small objects in the object directory (Section 4.2), but this would still require at minimum one RPC per read.

When the drivers are spread (Figures 12b and 12d), ownership and leases both scale linearly. Ownership scales better than leases in Figure 12b because more work is offloaded onto the worker processes. Ownership and leases achieve similar throughput in Figure 12d, but the ownership system also includes memory safety (Section 4.2). The centralized design (2 shards) scales linearly to ∼60 nodes. Adding more shards would raise this threshold, but only by a constant amount.

When the drivers are colocated (Figures 12a and 12c), both baselines flatline because of a centralized bottleneck: the scheduler on the drivers’ node. Ownership also shows this, but there is less scheduler load overall because the drivers reuse resources for multiple tasks (Section 4.1). A comparable optimization for the baselines would require each driver to batch task submission, at the cost of latency. Throughput for ownership is lower in Figure 12c than in Figure 12a due to the overhead of garbage collection.

Thus, because ownership decentralizes system state among the workers, it can achieve vertical (Figures 12a and 12c) and horizontal (Figures 12b and 12d) scalability. Also, it matches the performance of pass-by-value RPC while enabling new workloads through distributed memory (Section 2.2).

Scaling through borrowing. We show how first-class futures enable delegation. Figure 12e shows the task throughput for an application that submits 100K no-op tasks that each depend on the same 1MB object created by the driver. The tasks are submitted either by the driver (x=0) or by a number of nested tasks that each borrow a reference to the driver’s object. All workers are colocated on an m5.16xlarge node.

For all systems, the throughput with a single borrower (x=1) is about the same as when the driver submits all tasks directly (x=0). Distributing task submission across multiple borrowers results in a 2× improvement for ownership and negligible improvement for the baselines. Thus, with ownership, an application can scale past the task dispatch throughput of a single worker by delegating to nested tasks. This is due to (1) support for first-class distributed futures, and (2) the hierarchical distributed reference counting protocol, which distributes an object’s reference count among its borrowers instead of centralizing it at the owner (Section 4.2). In contrast, the baselines would require additional nodes to scale.

Latency. Figure 13 measures task latency with a single worker, hosted either on the same node as the driver (“local”), or on a separate m5.16xlarge node (“remote”). The driver submits 3k tasks that each take the same 1MB object as an argument and that immediately returns a short string. We report the average duration before each task starts execution.

First, distributed memory achieves better latency than pass-by-value in all cases because these systems avoid unnecessary copies of the task argument from the driver to the worker.

Second, compared to centralized and leases, ownership achieves on average 1.6× lower latency. This is due to (1)
the ability to write metadata locally at the owner instead of a remote process, and (2) the ability to reuse leased resources, in many cases bypassing the scheduling layer (Section 4.1).

Recovery. This benchmark submits a chain of tasks that execute on a remote m5.xlarge node. Each task depends on the previous, sleeps for the duration on the x-axis (total duration 10s), and returns either (a) a short binary string, or (b) a 10MB blob.

Figure 13: Task latency. Local means that the worker and driver are on the same node. Error bars for standard deviation (across 3k tasks).

Figure 14: Total run time (log-scale), relative to ownership without failures. The application is a chain of dependent tasks that execute on one node. Each task sleeps for the duration on the x-axis (total 10s) and returns either (a) a short binary string, or (b) a 10MB blob.

Online video processing. We implement Figure 3b with 60 concurrent videos. The tasks for each stream are executed on an m5.xlarge “worker” node (1 per stream) and submitted by a driver task on a separate m5.xlarge “owner” node. Each owner node hosts 4 drivers. Each video source uses an actor to hold frame-to-frame decoder state. However, tasks are idempotent: a previous frame may be reread with some latency penalty. We use a YouTube video with a frame rate of 29 frames/s and a radius of 1s for the moving average.

Figure 15b shows latency without failures. All systems achieve similar median latency (~65ms), but leases and centralized have a long tail (1208ms and 1923ms, respectively). Figure 15c shows latency during an injected failure, 5s after the start of the Decoder actor (Figure 3b). Lease-based recovery is slow because the decoder actor must replay all tasks, and each task accumulates overhead from lease expiration. Checkpointing the actor was infeasible because the leases implementation does not safely garbage-collect lineage.

Figure 15c also shows different failure scenarios for ownership, with a failure after 10s. The owner uses lineage reconstruction to recover quickly from a worker failure (1.9s in O;WF). Owner recovery is slower because the failed owner must re-execute from the beginning (8.8s in O;OF). To bound re-execution, we use application-level checkpoints (O+CP, checkpoints to a remote Redis instance once per second). Each checkpoint includes all intermediate state needed to transform the given frame, such as the cumulative sum so far (Figure 3b). When the sink receives the transformed frame, it “commits” the checkpoint by writing the frame’s index to Redis. This results in negligible overhead (O vs. O+CP) and faster recovery (1.1s in O+CP;OF).

6 Related Work

Distributed futures. Several systems [4, 34, 37, 45, 48, 52] have implemented a distributed futures model. Most [37, 45] use a centralized master (Section 3.2). In contrast, ownership is a decentralized design that stores system state directly in the workers that invoke the tasks. Ray [34] shards the centralized store before task execution and does not support automatic memory management. Lineage stash [52] is a complementary technique for recovering nondeterministic execution; ownership provides infrastructure for failure detection and memory management.

Other dataflow systems. Distributed data-parallel systems provide high-throughput batch computation and transparent data recovery [15, 25, 54, 56]. Many of our techniques build on...
these systems, in particular the use of distributed memory [25, 56] and lineage re-execution [15, 25, 54, 56]. Indeed, a data-parallel program is equivalent to a distributed futures program with no nested functions.

Most distributed data-parallel systems [15, 25, 54, 56] employ some form of centralized master, a bottleneck for applications with fine-grained tasks [32, 44, 51]. Naiad [35, 36] and Canary [44] support fine-grained tasks but, like other data-parallel systems, implement a static task graph, i.e. all tasks must be specified upfront. In contrast, distributed futures are an extension of RPC, which allows tasks to be dynamically invoked. Nimbus [32] supports both fine-grained and dynamic tasks with a centralized controller by leveraging execution templates for iterative computations. In contrast, ownership distributes the control plane and schedules tasks one at a time. These approaches are complementary; an interesting future direction is to apply execution templates to distributed futures.

Actor systems. Distributed futures are compatible with the actor model [7, 24]. Other actor frameworks [1, 12] already use futures for asynchrony, but with pass-by-value semantics, making it expensive to process large data. Actors can be extended with distributed memory to enable pass-by-reference semantics. Since distributed memory is immutable, it does not violate the condition of no shared state.

Our fault tolerance model is inspired by supervision in actor systems [7]. In this model, a supervisor actor delegates work to its children actors and is responsible for handling any failures among its children. By default, an actor also fatho-shares with its supervisor. Our contribution is in extending the supervision model to objects and object recovery.

Parallel programming systems. MPI [18] exposes a low-level pass-by-reference interface. In contrast, distributed futures supports pass-by-reference and heterogeneous processes.

Distributed futures are more similar in interface to other parallel programming runtimes [10, 14, 21, 31, 47]: the user annotates a sequential program to designate procedures that can be executed in parallel. Out of these systems, ownership is perhaps most similar to Legion [10], in that the developer specifies a task hierarchy that dictates system behavior. Our contribution is in identifying and addressing the challenges of failure detection and recovery for distributed futures.

Distributed memory. Distributed shared memory [40] provides the illusion of a single globally shared and mutable address space across a physically distributed system. Transparency has historically been difficult to achieve without adding exorbitant runtime overhead. Mutability makes consistency a major problem [11, 26, 28, 40], and fault tolerance has never been satisfactorily addressed [40].

More recent distributed memory systems [6, 9, 16, 27, 41] implement a higher-level key-value store interface. Most target a combination of performance, consistency, and durability. Similar to our use of distributed memory (Section 4.2), in-memory data replicas are used to improve durability and recovery time. Indeed, many of these systems could likely be used in place of our distributed memory subsystem.

However, the requirements of our distributed memory subsystem are minimal compared to previous work, e.g., durability is only an optimization. This is because we target an even higher-level interface that integrates directly with the programming language: unlike a key, a DFut can be used to express rich application semantics to the system, such as an RPC’s data dependencies. Also, like previous data processing systems [15, 37, 56], data is immutable. Thus, fine-grained mutations are expensive, but consistency is not a problem.

7 Discussion

Ownership is the basis of the Ray architecture in v1.0+ [5], implemented in ~14k C++ LoC. Previously, Ray used a sharded global metadata store [34]. There were two problems with this approach: (1) latency, and (2) worker nodes still had to coordinate for operations such as failure detection. Ray v0.7 introduced leases (Section 3.2), which solved the latency problem but not coordination. It became impractical to introduce distributed protocols involving multiple objects, such as for garbage collection. We designed ownership for this purpose.

While transparent recovery is an explicit goal of this paper, it is not the only benefit of ownership. Anecdotally, the two main benefits of ownership for Ray users are performance and reliability. In particular, reliability includes correct and timely failure detection and garbage collection. Notably, ownership-based transparent recovery is not yet widely used.

We believe that this is due to: (1) applications having custom recovery requirements that cannot be met with lineage reconstruction alone, and (2) the cost of transparent recovery. Thus, one design goal was to ensure that only applications that needed transparent recovery would have to pay the cost. Ownership is a first step towards this: it provides reliability to all applications and transparent object recovery as an option.

In the future, we hope to extend this work to support a spectrum of application recovery requirements. For example, we could extend ownership with options to recover actor state.
Acknowledgements

We thank our anonymous reviewers and our shepherd Ryan Huang for their insightful feedback. We also thank Alvin Cheung, Michael Whittaker, Joe Hellerstein, and many others at the RISELab for their helpful discussion and comments. In addition to NSF CISE Expeditions Award CCF-1730628, this research is supported by gifts from Alibaba Group, Amazon Web Services, Ant Group, CapitalOne, Ericsson, Facebook, Futurewei, Google, Intel, Microsoft, Nvidia, Scotiabank, Splunk, and VMware.

References

A Distributed Reference Counting

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local reference</td>
<td>A flag indicating whether the DFut has gone out of the process’s scope.</td>
</tr>
<tr>
<td>Submitted task count</td>
<td>Number of tasks that depend on the object that were submitted by this process and that have not yet completed execution.</td>
</tr>
<tr>
<td>Borrowers</td>
<td>The set of worker IDs of the borrowers created by this process, by passing the DFut as a first-class value.</td>
</tr>
<tr>
<td>Nested DFuts</td>
<td>The set of DFuts that are in scope and whose values contain this DFut.</td>
</tr>
<tr>
<td>Lineage count</td>
<td>Number of Tasks that depend on this DFut that may get re-executed. This count only determines when the lineage (the Task field) should be released; the value can be released even when this count is nonzero.</td>
</tr>
</tbody>
</table>

Table 3: Full description of the References field in Table 2. Every process with an instance of the DFut (either the owner or a borrower) maintains these fields.

If a DFut never leaves the scope of its owner, it does not require a distributed reference count. This is because the owner always has full information about which pending tasks require the object. However, since our API allows passing DFuts to other tasks as first-class values, we use a distributed reference count to decide when the object is out of scope.

Our reference counting protocol is similar to existing solutions [33, 42]. As explained in Section 4.2, the reference count is maintained with a tree of processes. Each process keeps a local set of borrower worker IDs, i.e., its children nodes in the tree. Most of the messages needed to maintain the tree are piggy-backed on existing protocols, such as for task scheduling.

A borrower is created when a task returns a SharedDFut to its parent task, or passes a SharedDFut to a child task. In both cases, the process executing the task adds the ID of the worker that executes the parent or child task to its local borrower set.

In many cases, a child task will finish borrowing the DFut by the time it has finished execution. Concretely, this means that the worker executing the child task will no longer have a local reference to the DFut, nor will it have any pending dependent tasks. Thus, when the worker returns the task’s result to its owner, the owner can remove the worker from its local set of borrowers, with no additional messages needed. This optimization is important for distributing load imposed by reference counting among the borrowers, rather than requiring all reference holders to be tracked by the owner.

However, in some cases, the worker may borrow the DFut past the duration of the child task. There are two cases: (1) the worker passed the DFut as an argument to a task that is still pending execution, or (2) the worker is an actor and stored the DFut in its local state. In these cases, the worker notifies the owner that it is still borrowing the DFut when replying with the task’s return value.

Eventually, the owner must collect all of the borrowers in its local set. It does this by sending a request to each borrower to reply once the borrower’s reference count has gone to zero. Borrowers themselves never delete from their local set of borrowers. Once a borrower no longer has a reference or any pending dependent tasks, it replies to the owner with its accumulated local borrower set. The owner then removes the borrower, merges the received borrowers into its local set and repeats the same process with any new borrowers. If a borrower dies before it can be removed, the owner removes it upon being notified of the borrower’s death.

When a DFut is returned by a task, it results in a nested DFut. Nested DFuts can be automatically flattened, e.g., when submitting a dependent task, but we must still account for nesting during reference counting. We do this by keeping a set of DFuts whose values contain the DFut in question in the ownership table (Table 2). The DFut’s value is pinned if its nested set is non-empty.

B Formal Specification

We developed a formal specification for the ownership-based system architecture [53]. It models the system state transitions of the ownership table for task scheduling, garbage collection, and worker failures. The goal is to check the correctness of the system design, which is manifested in the following properties:

• Safety: A future’s lineage information is preserved as long as a task exists that depends on the value of the future. This is defined recursively: at any time, either the value of a future is stored inline (thus cannot be lost), or all futures that this future depends on for computing its value must be safe. Formally, it means the following invariant holds at any given time: \(\forall x, \)

\[
\text{LineageInScope}(x) \defeq \\
\forall x = \text{INLINE_VALUE} \\
\lor \forall arg \in x.\text{args} : \text{LineageInScope}(arg)
\]

• Liveness: The system will eventually execute all tasks and resolve all future values, even in case of failures, i.e., all Get calls eventually return.

• No Resource Leakage: The system will eventually clean up all task states and future values, after the all references to futures become out-of-scope.

We checked the model using the TLA+ Model Checker [55] for up to 3 levels of recursive remote function calls, where each function creates up to 3 futures, and verified that the safety and liveness properties hold in more than 44 million distinct states. Currently, the model does not include first-class futures or actors; we plan to include these and open-source the full TLA+ specification in the future.